Skip to main content

Isothermal compression in air compressor

For greater efficiency air compression should be isothermal as this requires the minimum work input.

In practice Isothermal compression is not possible, an ideal Isothermal cycle requires sufficient time to allow all the required heat to be transferred out of the cylinder, practicality dictates that the piston must have a relatively high speed to give a reasonable output, Cylinder cooling on a single stage compressor gives better efficiency but there is a limitation in the surface area to cylinder volume that can be used for cooling effect, but multistage compressors with an efficient extended surface inter stage cooler gives cycle improved compression efficiency better approaching that of the isothermal.



In theory the greater the number of stages the closer the curve will approach the ideal isothermal compression curve, however there is an increase in cost, complexity, and the law of diminishing returns limit the number.

Popular posts from this blog

How to find out length of holding tube in pasteurizer?

Pasteurization requires that the milk is in custody for a specified time. The appropriate length for the holding tube can be calculated by the flow rate (Q) of milk and the diameter (D) of the holding tube using the formula: Length of holding tube, L = Q x holding time/A x Î· A = Area = pi/4 x sqr D Where an efficiency factor, η, of 0.85 is used in the model.

Specific power consumption of Air compressor

Specific Power Consumption   Specific power consumption is the ratio of the power consumed by an engine to a certain force such as the amount of output the engine (equipment) produces. It allows engines (equipments) of all different sizes to be compared to see which is the most power efficient. It allows manufacturers to see which engine (equipment) will use the least power while still producing a high amount of output. Specific power consumption of Air compressor The ratio of power consumption (in KW) to the volume delivered at ambient conditions. Specific power consumption= Actual power consumed by the compressor/Measured free air delivery If the measured flow is 250 m3/hr and actual power consumption is 30KW. Then Specific power requirement = 20 KW/250 m3/hr