Skip to main content

What is the meaning of pH in chemistry?

pH is the negative log of hydrogen ion concentration in a water-based solution. pH is an abbreviation for "power of hydrogen" where "p" is short for the German word for power, potenz and H is the element symbol for hydrogen. The H is capitalized because it is standard to capitalize element symbols.

pH is a logarithmic measure of hydrogen ion concentration.

PH = - log10(H+)

It is a number between 0 and 14 indicating the degree of acidity or alkalinity. The pH scale resembles a thermometer scale, but the pH scale indicates intensity of acidity or alkalinity. The midpoint of the pH scale is 7, and a solution with this pH I neutral. Numbers below 7 denote acidity; those above, alkalinity.

 For example, a pH of 3 is ten times more acidic than a pH of 4 and 100 times (10 times 10) more acidic than a pH value of 5. So, a strong acid may have a pH of 1-2, while a strong base may have a pH of 13-14. A pH near 7 is considered to be neutral.

Laboratory pH meters are often made with a glass electrode consisting of a silver wire coated with silver chloride immersed in dilute hydrochloric acid. The electrode solution is separated from the solution to be measured by a thin glass membrane. 

The potential which develops across that glass membrane can be shown to be proportional to the hydrogen ion concentrations on the two surfaces. In the measurement instrument, a cell is made with the other electrode commonly being a mercury-mercury chloride electrode. The cell potential is then linearly proportional to the pH and the meter can then be calibrated to read directly in pH.

Popular posts from this blog

How to find out length of holding tube in pasteurizer?

Pasteurization requires that the milk is in custody for a specified time. The appropriate length for the holding tube can be calculated by the flow rate (Q) of milk and the diameter (D) of the holding tube using the formula: Length of holding tube, L = Q x holding time/A x Î· A = Area = pi/4 x sqr D Where an efficiency factor, η, of 0.85 is used in the model.

Specific power consumption of Air compressor

Specific Power Consumption   Specific power consumption is the ratio of the power consumed by an engine to a certain force such as the amount of output the engine (equipment) produces. It allows engines (equipments) of all different sizes to be compared to see which is the most power efficient. It allows manufacturers to see which engine (equipment) will use the least power while still producing a high amount of output. Specific power consumption of Air compressor The ratio of power consumption (in KW) to the volume delivered at ambient conditions. Specific power consumption= Actual power consumed by the compressor/Measured free air delivery If the measured flow is 250 m3/hr and actual power consumption is 30KW. Then Specific power requirement = 20 KW/250 m3/hr